Home PC Games Linux Windows Database Network Programming Server Mobile  
           
  Home \ Database \ MongoDB relations, references, index query coverage     - Use Python automatically cleared Android Engineering excess resources (Programming)

- How Glances monitoring system on Ubuntu (Linux)

- How Linux Log Analysis (Linux)

- CentOS 6.6 running level (Linux)

- Install Jetty on CentOS / RHEL 6.X (Server)

- Tsunami-udp accelerated network transmission (Linux)

- ntop monitoring software configuration and installation (Linux)

- Ten best plug surge Emacs Productivity (Linux)

- MySQL 5.7.10 source code for the latest version of the installation process in detail (Database)

- How to use jgit to manage Git submodule (Linux)

- Learn about EditText little depth (Programming)

- Java Network Programming Internet address lookup (Programming)

- Iptables use examples (Linux)

- Hunk / Hadoop: Performance Best Practices (Server)

- MariaDB 10 Multi-source replication (Database)

- expdp reported ORA-39181 Export Processing Method (Database)

- Selection sort, insertion sort, and Shell sort (Programming)

- Hard disk encryption to protect data security (Linux)

- CentOS7 install MySQL 5.5 (Database)

- On the PC goes heavy security watch your startup items (Linux)

 
         
  MongoDB relations, references, index query coverage
     
  Add Date : 2018-11-21      
         
         
         
 

First, the relationship

Relations

MongoDB representation interlinkages between multiple documents in logic. You can establish contact by embedding and references between documents. Relationship in MongoDB can be: 1 to 1,1 for more and more of the 1-many.

A user can use more than one address, which is typical of many relationship.

user documentation can be:

{
  "_id": ObjectId ( "52ffc33cd85242f436000001"),
  "name": "Tom Hanks",
  "contact": "987654321",
  "dob": "01-01-1991"
}

address document can be:

{
  "_id": ObjectId ( "52ffc4a5d85242602e000000"),
  "building": "22 A, Indiana Apt",
  "pincode": 123456 ,
  "city": "Los Angeles",
  "state": "California"
}

1, the embedded relationship

Using the embedded method, the address of the user's documents into the document

{
    "_id": ObjectId ( "52ffc33cd85242f436000001"),
  "contact": "987654321",
  "dob": "01- 01-1991 ",
 " name ":" Tom Benzamin ",
 " address ": [
      {
        "building": "22 A, Indiana Apt",
        "pincode": 123456,
        "city": "Los Angeles",
        "state": "California"
     },
      {
        "building": "170 A, Acropolis Apt",
        "pincode": 456789,
        "city": "Chicago",
        "state": "Illinois"
     }]
}

If so, then you can save so get the user's address:

db.users.findOne ({ "name": "Tom Benzamin"}, { "address": 1})

The disadvantage of this data structure is that if users and address the increasing amount of data becomes larger and larger, will affect the read and write performance.

2, a reference approach

This method is similar to a relational database foreign key, will address the _id saved to user documentation

{
  "_id": ObjectId ( "52ffc33cd85242f436000001"),
  "contact": "987654321",
  "dob": "01-01- 1991 ",
 " name ":" Tom Benzamin ",
 " address_ids ": [
      ObjectId (" 52ffc4a5d85242602e000000 "),
      ObjectId ( "52ffc4a5d85242602e000001")
 ]
}

We can read the user's address object id (ObjectId) to get detailed information about the user's address. This method requires two queries, the first query object id user's address (ObjectId), the second address for more information on the user's query by id.

var result = db.users.findOne ({ "name": "Tom Benzamin"}, { "address_ids": 1})
var addresses = db.address.find ({ "_ id": { "$ in": result [ "address_ids"]}})

Second, the database references

mongodb There are two references: a reference manual (Manual References) and DBRefs

If we have a different set (address_home, address_office, address_mailing, etc.) stored in a different address (address, office address, mailing address, etc.). This time when we call different address, you need to specify a collection, a document reference document from multiple collections, we should use DBRefs.

DBRef form of:

{$ ref:, $ id:, $ db:  }

where $ ref: collection name, $ id: reference id, $ db: Database name (optional).

The following example uses a user data document DBRef, field address:

{
  "_id": ObjectId ( "53402597d852426020000002"),
  "address": {
  "$ ref": "address_home",
  "$ id": ObjectId ( "534009e4d852427820000002"),
  "$ db": "w3cschoolcc"},
  "contact": "987654321",
  "dob": "01-01-1991",
  "name": "Tom Benzamin"
}

address DBRef field specifies the address referenced documents are under address_home collection w3cschoolcc database, id is 534009e4d852427820000002.

The following code, we specify $ ref parameter (address_home set) to find the collection at the specified id user address information:

var user = db.users.findOne ({ "name": "Tom Benzamin"})
var dbRef = user.address
db [dbRef $ ref.] .findOne ({ "_ Id ": (. dbRef $ id)})

The above examples returns address_home collection address data:

{
  "_id": ObjectId ( "534009e4d852427820000002"),
  "building": "22 A, Indiana Apt",
  "pincode": 123456 ,
  "city": "Los Angeles",
  "state": "California"
}

Third, coverage index query

cover the following query is a query:
• all query fields are part of the index
• The query returns all the fields in the same index

Because all appear in the query field is part of the index, MongoDB data files without having to retrieve the entire match query terms and return query results using the same index. Because the index reside in RAM, the access to data than to read data much faster by scanning documents from the index.

Example: user set:

 

{
  "_id": ObjectId ( "53402597d852426020000002"),
  "contact": "987654321",
  "dob": "01-01- 1991 ",
 " gender ":" M ",
 " name ":" Tom Benzamin ",
 " user_name ":" tombenzamin "
}

Create joint index, gender and field user_name

db.users.ensureIndex ({gender: 1, user_name: 1})

Now, the index will cover the following query:

db.users.find ({gender: "M"}, {user_name: 1, _id: 0})

For the above query, MongoDB's not going to file for a database. Instead, it extracts the data from the index, which is very fast data query. Since our index does not include the _id field, _id will be returned by default in the query, we can concentrate exclude it in MongoDB query results. The following examples are not ruled _id, the query will not be overwritten:

db.users.find ({gender: "M"}, {user_name: 1})

If all of the index field is an array index query coverage can not be used, all index field is a sub-document.

     
         
         
         
  More:      
 
- Four levels of intrusion on Linux server and counter-measures (Linux)
- Android HTTP request with Get Information (Programming)
- Ubuntu 14.04 / 14.10 how to install Mate 1.10.0 (Linux)
- Spring Data JPA call a stored procedure examples (Programming)
- How to make a U disk to install Ubuntu (Linux)
- How to network to share files between Windows, MAC and Linux (Linux)
- To install Spotify in Ubuntu / Mint (Linux)
- Linux System Administrator Network Security Experience (Linux)
- Pydev installed and configured on the Eclipse (Linux)
- Source code is installed MySQL 5.6.28 (Database)
- Ubuntu Linux to create and increase the Swap partition tutorial (Linux)
- HBase Application Development Review and Summary of Series (Database)
- Log4j configuration file Explanation (Linux)
- Use OpenSSL to generate a certificate detailed process (Linux)
- Use 3G wireless network card under Linux (Linux)
- Android Studio interface-related settings (Linux)
- Zabbix monitoring tool deployment under Ubuntu server (Server)
- Linux, Eclipse flash back and reinstall the JDK methods (Linux)
- HTTP Client Hints Introduction (Server)
- tespeed - test speed of Python tools (Linux)
     
           
     
  CopyRight 2002-2022 newfreesoft.com, All Rights Reserved.