Home PC Games Linux Windows Database Network Programming Server Mobile  
  Home \ Database \ MongoDB relations, references, index query coverage     - Java NIO1: I / O model overview (Programming)

- 8 Docker knowledge you may not know (Server)

- Security implementation of disk data protection under Linux (Linux)

- Source install Python3.4 on CentOS (Linux)

- Using Linux command line and execute PHP code (Programming)

- IP configuration under Linux (Linux)

- Linux scheduling summary (Linux)

- Linux system security configuration (Linux)

- Netapp storage routine inspections and information gathering (Linux)

- MyCAT read and write separation of MySQL (Database)

- Use ARChon runtime environment to run Android apps on Ubuntu (Linux)

- Linux print file and send mail (Linux)

- Ubuntu 15.10 / 14.04 install subtitling software Aegisub (Linux)

- Exploring the Android Listview display confusion (Programming)

- Change the kernel boot sequence after CentOS 7 kernel upgrade (Linux)

- Configuring Proxy on a Unix terminal, accelerate Android Studio Construction (Linux)

- Linux system Iptables Firewall User Manual (Linux)

- How do you know your public IP terminal in Linux (Linux)

- To explore the Android ListView caching mechanism again (Programming)

- git checkout generated in the use of temporary br (Linux)

  MongoDB relations, references, index query coverage
  Add Date : 2018-11-21      

First, the relationship


MongoDB representation interlinkages between multiple documents in logic. You can establish contact by embedding and references between documents. Relationship in MongoDB can be: 1 to 1,1 for more and more of the 1-many.

A user can use more than one address, which is typical of many relationship.

user documentation can be:

  "_id": ObjectId ( "52ffc33cd85242f436000001"),
  "name": "Tom Hanks",
  "contact": "987654321",
  "dob": "01-01-1991"

address document can be:

  "_id": ObjectId ( "52ffc4a5d85242602e000000"),
  "building": "22 A, Indiana Apt",
  "pincode": 123456 ,
  "city": "Los Angeles",
  "state": "California"

1, the embedded relationship

Using the embedded method, the address of the user's documents into the document

    "_id": ObjectId ( "52ffc33cd85242f436000001"),
  "contact": "987654321",
  "dob": "01- 01-1991 ",
 " name ":" Tom Benzamin ",
 " address ": [
        "building": "22 A, Indiana Apt",
        "pincode": 123456,
        "city": "Los Angeles",
        "state": "California"
        "building": "170 A, Acropolis Apt",
        "pincode": 456789,
        "city": "Chicago",
        "state": "Illinois"

If so, then you can save so get the user's address:

db.users.findOne ({ "name": "Tom Benzamin"}, { "address": 1})

The disadvantage of this data structure is that if users and address the increasing amount of data becomes larger and larger, will affect the read and write performance.

2, a reference approach

This method is similar to a relational database foreign key, will address the _id saved to user documentation

  "_id": ObjectId ( "52ffc33cd85242f436000001"),
  "contact": "987654321",
  "dob": "01-01- 1991 ",
 " name ":" Tom Benzamin ",
 " address_ids ": [
      ObjectId (" 52ffc4a5d85242602e000000 "),
      ObjectId ( "52ffc4a5d85242602e000001")

We can read the user's address object id (ObjectId) to get detailed information about the user's address. This method requires two queries, the first query object id user's address (ObjectId), the second address for more information on the user's query by id.

var result = db.users.findOne ({ "name": "Tom Benzamin"}, { "address_ids": 1})
var addresses = db.address.find ({ "_ id": { "$ in": result [ "address_ids"]}})

Second, the database references

mongodb There are two references: a reference manual (Manual References) and DBRefs

If we have a different set (address_home, address_office, address_mailing, etc.) stored in a different address (address, office address, mailing address, etc.). This time when we call different address, you need to specify a collection, a document reference document from multiple collections, we should use DBRefs.

DBRef form of:

{$ ref:, $ id:, $ db:  }

where $ ref: collection name, $ id: reference id, $ db: Database name (optional).

The following example uses a user data document DBRef, field address:

  "_id": ObjectId ( "53402597d852426020000002"),
  "address": {
  "$ ref": "address_home",
  "$ id": ObjectId ( "534009e4d852427820000002"),
  "$ db": "w3cschoolcc"},
  "contact": "987654321",
  "dob": "01-01-1991",
  "name": "Tom Benzamin"

address DBRef field specifies the address referenced documents are under address_home collection w3cschoolcc database, id is 534009e4d852427820000002.

The following code, we specify $ ref parameter (address_home set) to find the collection at the specified id user address information:

var user = db.users.findOne ({ "name": "Tom Benzamin"})
var dbRef = user.address
db [dbRef $ ref.] .findOne ({ "_ Id ": (. dbRef $ id)})

The above examples returns address_home collection address data:

  "_id": ObjectId ( "534009e4d852427820000002"),
  "building": "22 A, Indiana Apt",
  "pincode": 123456 ,
  "city": "Los Angeles",
  "state": "California"

Third, coverage index query

cover the following query is a query:
• all query fields are part of the index
• The query returns all the fields in the same index

Because all appear in the query field is part of the index, MongoDB data files without having to retrieve the entire match query terms and return query results using the same index. Because the index reside in RAM, the access to data than to read data much faster by scanning documents from the index.

Example: user set:


  "_id": ObjectId ( "53402597d852426020000002"),
  "contact": "987654321",
  "dob": "01-01- 1991 ",
 " gender ":" M ",
 " name ":" Tom Benzamin ",
 " user_name ":" tombenzamin "

Create joint index, gender and field user_name

db.users.ensureIndex ({gender: 1, user_name: 1})

Now, the index will cover the following query:

db.users.find ({gender: "M"}, {user_name: 1, _id: 0})

For the above query, MongoDB's not going to file for a database. Instead, it extracts the data from the index, which is very fast data query. Since our index does not include the _id field, _id will be returned by default in the query, we can concentrate exclude it in MongoDB query results. The following examples are not ruled _id, the query will not be overwritten:

db.users.find ({gender: "M"}, {user_name: 1})

If all of the index field is an array index query coverage can not be used, all index field is a sub-document.

- Linux system performance monitoring with Nmon (Linux)
- How to update the ISPConfig 3 SSL Certificates (Server)
- Lucene Getting Started Tutorial (Server)
- HashMap in Android and Java different implementations (Programming)
- Some safety precautions of Linux servers (Linux)
- Linux terminal interface font color settings (Linux)
- Linear table with a Java implementation of the iterator (Programming)
- Linux screen commonly commands (Linux)
- Perl said method B if A judge (Programming)
- Linux - EXT2 file system is described in detail (Linux)
- MongoDB 3.0 New Features (Database)
- Git delete files (Linux)
- Ubuntu manually set the DSL broadband connection (Linux)
- Java inner classes (Programming)
- RHEL5.8 physical opportunities to Read-only file system (Linux)
- Subsequent binary search tree traversal sequence (Programming)
- Installation and management of Linux applications (Linux)
- Docker in the development and practice of IFTTT (Server)
- Linux file system structure Introduction (Linux)
- Use Python automatically cleared Android Engineering excess resources (Programming)
  CopyRight 2002-2022 newfreesoft.com, All Rights Reserved.